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1. Introduction

Exclusive vector meson production has long played an important role in studying the

strong interaction. The seminal work [1, 2] has renewed interest in this process, showing

that in Bjorken kinematics it provides access to generalized parton distributions and thus

to a wealth of information on the structure of the proton. While most theoretical and

experimental studies so far are for an unpolarized proton, the particular interest of target

polarization became clear when it was pointed out that meson production on a transversely

polarized target is sensitive to the nucleon helicity-flip distribution E [3, 4]. This distri-

bution offers unique views on the orbital angular momentum carried by partons in the

proton [5, 6] and on the correlation between polarization and the spatial distribution of

partons [7]. Whereas the corresponding polarization asymmetry in deeply virtual Compton

scattering is under better theoretical control, vector meson production has the advantage

of a greater sensitivity to the distribution of gluons (which in Compton scattering only

enters at next-to-leading order in αs). This holds not only in the high-energy regime but

even in a wide range of fixed-target kinematics [8 – 10], where polarization measurements

are feasible at existing or planned experimental facilities.

A different motivation to study polarized exclusive ρ production is that this channel

plays a rather prominent role in semi-inclusive pion production [11, 12, 9], which has become

a privileged tool to study a variety of spin effects, see e.g. [13]. It is important to identify
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kinematical regions where the exclusive channel ep → epρ → epπ+π− dominates semi-

inclusive observables, because in these regions great care must be taken when interpreting

the data in terms of semi-inclusive factorization.

Even with an unpolarized target, the spin structure of the process ep → epρ → epπ+π−

is very rich, because the angular distribution of the final state contains information on the

helicities of the exchanged virtual photon and of the ρ meson, as was worked out in the

classical analysis of Schilling and Wolf [14]. Yet more detailed information is available with

target polarization [15]. Experiments on unpolarized targets have found that s-channel

helicity is approximately conserved in the transition from the γ∗ to the ρ, with helicity

changing amplitudes occurring at most at the 10% level [16 – 20]. This greatly simplifies

the spin structure of the process. The aim of the present paper is to provide an analysis

framework for exclusive ρ production on a polarized nucleon target, making as explicit as

possible the relation between the angular dependence of the cross section and the helicity

amplitudes describing the hadronic subprocess γ∗p → ρp. We will present our results

in a form that emphasizes the close similarity in structure between an unpolarized and

a polarized target. Using the helicity basis for both virtual photon and meson, we also

provide an alternative to the representation of the unpolarized cross section in [14].

The following section gives the definitions of the kinematics and polarization variables

for the reaction under study. In section 3 we define the helicity amplitudes and the spin

density matrix elements describing the process and discuss some of their general properties.

In section 4 we express the angular distribution of the polarized cross section in terms of

these spin density matrix elements and point out some salient features of this representa-

tion. The simplifications arising from distinguishing natural and unnatural parity exchange

in the reaction are discussed in section 5. A number of positivity bounds relating different

spin density matrix elements are given in section 6. In section 7 we explain the complica-

tions arising from the distinction between target polarization relative to the momentum of

either the incident lepton or the virtual photon. The role of non-resonant contributions in

π+π− production is briefly discussed in section 8. Our results are summarized in section 9.

2. Kinematics and target polarization

Let us consider the electroproduction process

e(l) + p(p) → e(l′) + p(p′) + ρ(q′) (2.1)

followed by the decay

ρ(q′) → π+(k) + π−(k′), (2.2)

where four-momenta are given in parentheses. Throughout this work we use the one-photon

exchange approximation. All or results are equally valid for the production of a φ followed

by the decay φ → K+K−. They also hold if the scattered proton is replaced by an inclusive

system X with four-momentum p′, as explained at the end of section 3.

To describe the kinematics we use the conventional variables for deep inelastic pro-

cesses, Q2 = −q2, xB = Q2/(2p · q) and y = (p · q)/(p · l). We neglect the lepton mass
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Figure 1: Kinematics of ep → epρ in the target rest frame. ST is the transverse component of

the target spin vector w.r.t. the virtual photon direction.
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Figure 2: Kinematics of the hadronic subprocess γ∗p → ρp followed by the decay ρ → π+π−.

The coordinate systems (x, y, z) and (x′, y′, z′) differ from those in figure 1.

throughout and denote the longitudinal lepton beam polarization by Pℓ, with Pℓ = +1

corresponding to a purely right-handed and Pℓ = −1 to a purely left-handed beam. Let us

now go to the target rest frame and introduce the right-handed coordinate system (x, y, z)

of figure 1 such that q points in the positive z direction and l has a positive x component.

In this system we have l = |l|(sin θγ , 0, cos θγ) and q = |q|(0, 0, 1), where the angle θγ

between l and q is defined to be between 0 and π. In accordance with the Trento conven-

tion [21] we define the angle φ between the lepton and the hadron plane as the azimuthal

angle of q′ in this coordinate system, and φS as the azimuthal angle of the target spin

vector S. Following [22] we write S = (ST cos φS , ST sin φS ,−SL) with 0 ≤ ST ≤ 1 and

−1 ≤ SL ≤ 1, so that ST and SL describe transverse and longitudinal polarization with

respect to the virtual photon momentum, with SL = 1 corresponding to a right-handed

proton in the γ∗p c.m.
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To describe the target polarization of a given experimental setup, we introduce an-

other right-handed coordinate system (x′, y′, z′) in the target rest frame such that l =

|l|(0, 0, 1) and q = |q|(− sin θγ , 0, cos θγ) as shown in figure 1. In this system we write

S = (PT cos ψ,PT sin ψ,−PL) with 0 ≤ PT ≤ 1 and −1 ≤ PL ≤ 1, following again [22]. PT

and PL describe transverse and longitudinal polarization with respect to the lepton beam

direction, with PL = 1 corresponding to a right-handed proton in the ep c.m. The two sets

of variables describing the target polarization are related by

ST cos φS = cos θγ PT cos ψ − sin θγ PL ,

ST sin φS = PT sin ψ ,

SL = sin θγ PT cos ψ + cos θγ PL , (2.3)

which we will use in section 7. In terms of invariants the mixing angle θγ is given by

sin θγ = γ

√

1 − y − 1
4y2γ2

1 + γ2
, γ =

2xB MN

Q
, (2.4)

where MN is the nucleon mass. In Bjorken kinematics γ is small, and so is sin θγ ≈ γ
√

1 − y.

We finally specify the variables describing the vector meson decay (2.2). This is con-

veniently done in the π+π− c.m., which can be obtained from the γ∗p c.m. by a boost

in the direction of the scattered nucleon as shown in figure 2. In the π+π− c.m. we

introduce the right-handed coordinate system (x, y, z) shown in figure 2, where p′ =

|p′|(0, 0,−1) and where the target momentum p has a positive x component. In this

system we define ϑ and ϕ as the polar and azimuthal angle of the π+ momentum, i.e.

k = |k|(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). The relation between our notation here and the one

of Schilling and Wolf is1

φhere = −Φ [14] , ϕhere = φ [14] , ϑhere = θ [14] . (2.5)

3. Helicity amplitudes and spin density matrix

The strong-interaction dynamics of the electroproduction process (2.1) is fully contained

in the helicity amplitudes for the subprocess γ∗p → ρp. From these we will construct spin

density matrix elements which describe the angular distribution of the overall reaction

ep → ep π+π− and its dependence on the target polarization.

Since we will deal with interference terms we must specify our phase conventions. We

do this in the γ∗p c.m. and use the right-handed coordinate system (x′, y′, z′) shown in

figure 2. In this system we have q = |q|(0, 0,−1) and q′ = |q′|(sin Θ, 0,− cos Θ), with the

scattering angle Θ of the vector meson defined to be between 0 and π. Note that the positive

z′ axis points along p rather than q, as is often preferred for theoretical calculations. We

specify polarization states of the target proton by two-component spinors χ+1/2 = (1, 0)

1We remark that the expression for sin Φ given in eq. (13) of [14] is incorrect since it is always positive.

A correct definition is given in [23].
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for positive and χ−1/2 = (0, 1) for negative helicity. For the polarization vectors of the

virtual photon we choose

ε+1 = − 1√
2

(

0, 1,−i, 0
)

, ε−1 =
1√
2

(

0, 1, i, 0
)

,

εα
0 = Nε

(

qα − q2

p · q pα

)

, (3.1)

and for the polarization vectors of the ρ

e+1 = − 1√
2

(

0, cos Θ,−i, sin Θ
)

, e−1 =
1√
2

(

0, cos Θ, i, sin Θ
)

,

eα
0 = Ne

(

q′α − q′2

p′ · q′ p′α
)

, (3.2)

where the subscripts indicate helicities. Nε and Ne are positive constants ensuring the

proper normalization ε2
0 = 1 and e2

0 = −1 of the longitudinal polarization vectors. In the

ρ rest frame and the coordinate system (x, y, z) of figure 2, our meson polarization vectors

have the standard form e+1 = −(0, 1, i, 0)/
√

2, e−1 = (0, 1,−i, 0)/
√

2 and e0 = (0, 0, 0, 1).

Our phase conventions for the proton and the virtual photon are as in [22].

We now introduce amplitudes T νσ
µλ for the subprocess γ∗(µ)+ p(λ) → ρ(ν)+ p(σ) with

definite helicities µ, ν, λ, σ. Since the above phase conventions are defined with reference

only to momentum vectors of this subprocess, the helicity amplitudes only depend on the

photon virtuality, the γ∗p scattering energy and the scattering angle Θ, or equivalently on

Q2, xB and t = (p− p′)2. With our phase conventions they obey the usual parity relations

T−ν−σ
−µ−λ = (−1)ν−µ−σ+λ T νσ

µλ (3.3)

for equal Q2, xB and t on both sides. With these helicity amplitudes we define

ρνν′

µµ′,λλ′ = (NT + ǫNL)−1
∑

σ

T νσ
µλ

(

T ν′σ
µ′λ′

)∗
. (3.4)

Regarding the upper indices this is the spin density matrix of the vector meson, whereas the

lower indices specify the polarizations in the γ∗p state from which the meson is produced.2

The normalization factors

NT =
1

2

∑

λ,ν,σ

∣

∣T νσ
+λ

∣

∣

2
, NL =

1

2

∑

λ,ν,σ

∣

∣T νσ
0λ

∣

∣

2
(3.5)

are proportional to the differential cross sections dσT /dt and dσL/dt for transverse and

longitudinal photon polarization, respectively, and

ǫ =
1 − y − 1

4 y2γ2

1 − y + 1
2 y2 + 1

4 y2γ2
(3.6)

2Taking the trace in the meson polarization indices we obtain the relation
P

ν
ρνν

µµ′,λλ′ ∝ dσλ′λ
µ′µ/dt

between the spin density matrix ρ introduced here and the cross sections and interference terms used in

[22]. Compared with [22] we take the opposite order of indices in ρ, so that ν and ν′ appear in the standard

order for a spin density matrix.
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is the usual ratio of longitudinal and transverse photon flux. In addition to Q2, xB and

t, the spin density matrix elements ρνν′

µµ′,λλ′ depend on ǫ through the normalization factor

(NT + ǫNL). If one can perform a Rosenbluth separation by measuring at different ǫ but

equal Q2 and xB, it is advantageous to normalize them instead to NT , NL or
√

NT NL as

was done in [14]. It is straightforward to implement such a change in the formulae we give

in the following.

We find it useful to introduce the combinations

uνν′

µµ′ =
1

2

(

ρνν′

µµ′,++ + ρνν′

µµ′,−−

)

, lνν′

µµ′ =
1

2

(

ρνν′

µµ′,++ − ρνν′

µµ′,−−

)

(3.7)

for an unpolarized and a longitudinally polarized target, where for the sake legibility we

have labeled the target polarization by ± instead of ±1
2 . The combinations

sνν′

µµ′ =
1

2

(

ρνν′

µµ′,+− + ρνν′

µµ′,−+

)

, nνν′

µµ′ =
1

2

(

ρνν′

µµ′,+− − ρνν′

µµ′,−+

)

(3.8)

respectively describe transverse target polarization in the hadron plane (“sideways”) and

perpendicular to it (“normal”). One readily finds that the matrices u , l and s are hermi-

tian, whereas n is antihermitian,

uν′ν
µ′µ =

(

uνν′

µµ′

)∗
, lν

′ν
µ′µ =

(

lνν′

µµ′

)∗
, sν′ν

µ′µ =
(

sνν′

µµ′

)∗
,

nν′ν
µ′µ = −

(

nνν′

µµ′

)∗
. (3.9)

The diagonal elements uνν
µµ, lνν

µµ and sνν
µµ are therefore purely real, whereas nνν

µµ is purely

imaginary. Furthermore, the parity relations (3.3) translate into

u−ν−ν′

−µ−µ′ = (−1)ν−µ−ν′+µ′

uνν′

µµ′ , l−ν−ν′

−µ−µ′ = −(−1)ν−µ−ν′+µ′

lνν′

µµ′ ,

n−ν−ν′

−µ−µ′ = (−1)ν−µ−ν′+µ′

nνν′

µµ′ , s−ν−ν′

−µ−µ′ = −(−1)ν−µ−ν′+µ′

sνν′

µµ′ . (3.10)

As a consequence the matrix elements

u−+
−+ , u+−

−+ , u−+
0 0 , u 0 0

−+ (3.11)

are purely real, whereas the corresponding elements of l , s and n are purely imaginary.

Both experiment and theory indicate that s-channel helicity is approximately conserved

in the γ∗ → ρ transition for small invariant momentum transfer t. Correspondingly, one

expects that spin density matrix elements involving the product of two helicity conserving

amplitudes are greater than interference terms between a helicity conserving and a helicity

changing amplitude, and that those are greater than matrix elements involving the product

of two helicity changing amplitudes (where we refer to the helicities of the photon and

the ρ but not of the nucleon). Exceptions to this rule are however possible, since two

large amplitudes can have a small interference term because of their relative phase, and

since there can be cancellation of individually large terms in the linear combinations (3.7)

and (3.8) associated with different target polarizations. With this caveat in mind one can

readily assess the expected size of the spin density matrix elements (3.7) and (3.8) by

comparing the upper with the lower indices.

– 6 –
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Let us now investigate the behavior of our matrix elements for Θ → 0, i.e. in the limit

of forward scattering γ∗p → ρp. To this end we perform a partial wave decomposition

T νσ
µλ (Θ) =

∑

J

tνσ
µλ(J) dJ

λ−µ,σ−ν(Θ) (3.12)

where we have suppressed the dependence of T and the partial wave amplitudes t(J) on

Q2 and xB . Using the behavior dJ
m,n(Θ) ∼ Θ|m−n| of the rotation functions for Θ → 0 we

readily find

uνν′

µµ′ , lνν′

µµ′ ∼ Θp , nνν′

µµ′ , sνν′

µµ′ ∼ Θq (3.13)

with

p ≥ pmin = min
σ,λ =±1/2

{

∣

∣ν − µ − σ + λ
∣

∣ +
∣

∣ν ′ − µ′ − σ + λ
∣

∣

}

,

q ≥ qmin = min
σ,λ =±1/2

{

∣

∣ν − µ − σ + λ
∣

∣ +
∣

∣ν ′ − µ′ − σ − λ
∣

∣

}

. (3.14)

With Θ ∝ (t0 − t)1/2 for small Θ, we can rewrite (3.13) as

uνν′

µµ′ , lνν′

µµ′ ∼
t→t0

(t0 − t)p/2 , nνν′

µµ′ , sνν′

µµ′ ∼
t→t0

(t0 − t)q/2 , (3.15)

where t0 is the value of t for Θ = 0 at given Q2 and xB. In tables 1 and 2 we give

the corresponding powers for the linear combinations of spin density matrix elements that

will appear in our results for the cross section in section 4. We have ordered the entries

according to the hierarchy discussed after (3.11), listing first terms containing the product

of two helicity conserving amplitudes, then terms containing the interference between a

helicity conserving and a helicity changing amplitude, and finally terms which only involve

helicity changing amplitudes (with helicities always referring to the photon and the ρ but

not to the nucleon).

We emphasize that certain partial wave amplitudes tνσ
µλ(J) in (3.12) may be zero or

negligibly small for dynamical reasons. The actual powers of (t0 − t)1/2 in (3.15) can

thus be larger than the minimum values pmin and qmin required by angular momentum

conservation. If there is for instance no s-channel helicity transferred between the proton-

proton and the photon-meson transitions, then the relevant powers for n and s are given

by q = pmin +1, which is equal to qmin +2 for all but the first four entries in tables 1 and 2.

A concrete realization of this scenario is the calculation in [24], where the proton-proton

transition is described by the generalized parton distributions H, E and H̃, Ẽ, which do

not allow for helicity transfer to the photon-meson transition.

In the limit of large Q2 at fixed xB and t, the proof of the factorization theorem

in [2] implies that the transition from a longitudinal photon to a longitudinal ρ becomes

dominant, with all other transitions suppressed by powers of 1/Q. In this limit only the

spin density matrix elements u 0 0
0 0 and n 0 0

0 0 survive and can be expressed as convolutions of

hard-scattering kernels with generalized parton distributions and the light-cone distribution

– 7 –
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matrix elements pmin

u 0 0
++ + ǫu 0 0

0 0 0

u 0+
0+ − u−0

0+ l 0+
0+ − l−0

0+ 0

u++
++ + u−−

++ + 2ǫu++
0 0 l++

++ + l−−
++ 0

u−+
−+ l−+

−+ 0

u 0 0
0+ l 0 0

0+ 1

u 0+
++ − u−0

++ + 2Re ǫu 0+
0 0 l 0+

++ − l−0
++ + 2i Im ǫl 0+

0 0 1

u 0+
−+ l 0+

−+ 1

u 0−
0+ − u+0

0+ l 0−
0+ − l+0

0+ 2

u−+
++ + ǫu−+

0 0 l−+
++ + ǫl−+

0 0 2

u++
−+ l++

−+ 2

u++
0+ + u−−

0+ l++
0+ + l−−

0+ 1

u−+
0+ l−+

0+ 1

l 0 0
++ 2

u 0 0
−+ l 0 0

−+ 2

u+0
−+ l+0

−+ 3

u+−
0+ l+−

0+ 3

u+−
−+ l+−

−+ 4

Table 1: Minimum values of the powers which control the t → t0 behavior of combinations of spin

density matrix elements u and l as in (3.15). Some of the combinations are purely real or purely

imaginary because of the symmetry relations (3.9) and (3.10), whereas others are complex valued.

amplitude of the ρ. To leading order in 1/Q one has in particular

Im n 0 0
0 0

u 0 0
0 0

=

√

t0 − t

MN

√

1 − ξ2 Im
(

E∗H
)

(1 − ξ2) |H|2 −
(

ξ2 + t/(4M2
N )

)

|E|2 − 2ξ2 Re
(

E∗H
)

, (3.16)

where ξ = xB/(2−xB) and the convolution integrals H and E are for instance given in [22].

Experimental results and phenomenological analysis show however that 1/Q2 suppressed

effects can be numerically significant for Q2 of several GeV2, see e.g. [25, 24, 9, 10]. This

concerns both power corrections within u 0 0
0 0 or n 0 0

0 0 and formally power suppressed spin

density matrix elements such as u++
++ or u 0+

0+ . The detailed analysis in [2] reveals that

beyond leading-power accuracy in 1/Q, factorization of meson production into a hard-

scattering subprocess and nonperturbative quantities pertaining either to the target or

to the meson may be broken. On the other hand, factorization based approaches which

go beyond leading power in 1/Q and in particular also evaluate transition amplitudes for

transverse polarization of the γ∗ or ρ have been phenomenologically rather successful, see

e.g. [26, 24]

– 8 –
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matrix elements qmin

n 0 0
++ + ǫn 0 0

0 0 1

n 0+
0+ − n−0

0+ s 0+
0+ − s−0

0+ 1

n++
++ + n−−

++ + 2ǫn++
0 0 s++

++ + s−−
++ 1

n−+
−+ s−+

−+ 1

n 0 0
0+ s 0 0

0+ 0

n 0+
++ − n−0

++ + 2i Im ǫn 0+
0 0 s 0+

++ − s−0
++ + 2i Im ǫs 0+

0 0 0

n 0+
−+ s 0+

−+ 0

n 0−
0+ − n+0

0+ s 0−
0+ − s+0

0+ 1

n−+
++ + ǫn−+

0 0 s−+
++ + ǫs−+

0 0 1

n++
−+ s++

−+ 1

n++
0+ + n−−

0+ s++
0+ + s−−

0+ 0

n−+
0+ s−+

0+ 0

s 0 0
++ 1

n 0 0
−+ s 0 0

−+ 1

n+0
−+ s+0

−+ 2

n+−
0+ s+−

0+ 2

n+−
−+ s+−

−+ 3

Table 2: As table 1 but for combinations of spin density matrix elements n and s .

Let us finally generalize our considerations to the process

e(l) + p(p) → e(l′) + X(p′) + ρ(q′) , (3.17)

where the target proton dissociates into a hadronic system X. In analogy to the elastic case

one can introduce helicity amplitudes T νσ,X
µλ and combine them into spin density matrix

elements

ρνν′

µµ′,λλ′ = (NT + ǫNL)−1
∑

X,σ

T νσ,X
µλ

(

T ν′σ,X
µ′λ′

)∗
. (3.18)

The normalization factors NT and NL are defined as in (3.5) but with an additional sum

over all hadronic states X of given invariant mass MX , on which ρνν′

µµ′,λλ′ now depends

in addition to Q2, xB , t and ǫ. The combinations (3.7) and (3.8) for different target

polarization have the same symmetry properties (3.9) and (3.10) as in the elastic case.

Their behavior for t → t0 can be different, since in (3.14) one must now take the minimum

over all possible helicities σ = ±1
2 ,±3

2 , . . . of the hadronic system X. One finds however

that the powers pmin and qmin for the combinations of spin density matrix elements in

tables 1 and 2 are the same as in the elastic case. The results in the remainder of this work

only depend on the properties (3.9) and (3.10) and thus immediately generalize to the case

of target dissociation.

– 9 –
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4. The angular distribution

The calculation of the cross section for ep → ep π+π− proceeds by using standard methods

and we shall only sketch the essential steps. More details are for instance given in [14, 27,

22]. With our phase conventions the polarization state of the proton target is described by

the spin density matrix

τλλ′ =
1

2

(

1 + SL ST e−i(φ−φS)

ST ei(φ−φS) 1 − SL

)

, (4.1)

which is to be contracted with the matrix in (3.4). The result is conveniently expressed in

terms of the combinations (3.7) and (3.8) as

∑

λ,λ′

τλλ′ ρνν′

µµ′,λλ′ = uνν′

µµ′ + SL lνν′

µµ′ + ST cos(φ − φS) sνν′

µµ′ − ST sin(φ − φS) inνν′

µµ′ (4.2)

and describes the subprocess γ∗p → ρp. The decay ρ → π+π− is taken into account by

multiplication with the spherical harmonics,

ρµµ′ =
∑

ν,ν′

∑

λ,λ′

τλλ′ ρνν′

µµ′,λλ′ Y1ν(ϕ, ϑ)Y ∗
1ν′(ϕ, ϑ) , (4.3)

where

Y1+1 = −
√

3

8π
sin ϑ eiϕ , Y10 =

√

3

4π
cos ϑ , Y1−1 =

√

3

8π
sin ϑ e−iϕ . (4.4)

To obtain the cross section for the overall process ep → epπ+π− one must finally contract

the matrix ρµµ′ in (4.3) with the spin density matrix of the virtual photon.3 The cross

section can be written as

dσ

dψ dφdϕd(cos ϑ) dxB dQ2 dt
=

1

(2π)2
dσ

dxB dQ2 dt

(

WUU +PℓWLU +SLWUL (4.5)

+PℓSLWLL+ST WUT +PℓST WLT

)

with
dσ

dxB dQ2 dt
=

αem

2π

y2

1 − ǫ

1 − xB

xB

1

Q2

(

dσT

dt
+ ǫ

dσL

dt

)

, (4.6)

where dσT /dt and dσL/dt are the usual γ∗p cross sections for a transverse and longitudinal

photon and an unpolarized proton, with Hand’s convention for virtual photon flux. The

angular distribution is described by the quantities WXY , where X specifies the beam and

Y the target polarization. The normalization of the unpolarized term WUU is

∫

dφ

2π

∫

dϕ d(cos ϑ) WUU(φ,ϕ, ϑ) = 1 . (4.7)

3Up to a global factor, the result of this contraction can e.g. be obtained from eq. (3.20) of [27], with

ρµµ′ in the present work corresponding to σ(X)
µ′µ in [27] and φhere = −ϕ [27].
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To limit the length of subsequent expressions, we further decompose the coefficients ac-

cording to the ρ polarization and write

WXY (φ,ϕ, ϑ) =
3

4π

[

cos2ϑ W LL
XY (φ)+

√
2 cos ϑ sinϑ W LT

XY (φ,ϕ)+sin2ϑ W TT
XY (φ,ϕ)

]

(4.8)

for X,Y = U,L. The production of a longitudinal ρ is described by W LL
XY , the production

of a transverse ρ (including the interference between positive and negative ρ helicity) by

W TT
XY , and the interference between longitudinal and transverse ρ polarization by W LT

XY .

For a transversely polarized target we have in addition a dependence on φS ,

WXT (φS , φ, ϕ, ϑ) =
3

4π

[

cos2ϑ W LL
XT (φS , φ) +

√
2 cos ϑ sin ϑ W LT

XT (φS , φ, ϕ) (4.9)

+ sin2ϑ W TT
XT (φS , φ, ϕ)

]

with X = U,L. In addition to the angles, all coefficients WXY depend on Q2, xB and t,

which we have not displayed for the sake of legibility.

For unpolarized target and beam we have

W LL
UU(φ) =

(

u 0 0
++ + ǫu 0 0

0 0

)

− 2 cos φ
√

ǫ(1 + ǫ) Reu 0 0
0+ − cos(2φ) ǫu 0 0

−+ ,

W LT
UU (φ,ϕ) = cos(φ + ϕ)

√

ǫ(1 + ǫ) Re
(

u 0+
0+ − u−0

0+

)

− cos ϕ Re
(

u 0+
++ − u−0

++ + 2ǫu 0+
0 0

)

+ cos(2φ + ϕ) ǫRe u 0+
−+

− cos(φ − ϕ)
√

ǫ(1 + ǫ) Re
(

u 0−
0+ − u+0

0+

)

+ cos(2φ − ϕ) ǫRe u+0
−+ ,

W TT
UU (φ,ϕ) =

1

2

(

u++
++ + u−−

++ + 2ǫu++
0 0

)

+
1

2
cos(2φ + 2ϕ) ǫu−+

−+

− cos φ
√

ǫ(1 + ǫ) Re
(

u++
0+ + u−−

0+

)

+ cos(φ + 2ϕ)
√

ǫ(1 + ǫ) Re u−+
0+

− cos(2ϕ) Re
(

u−+
++ + ǫu−+

0 0

)

− cos(2φ) ǫRe u++
−+

+ cos(φ − 2ϕ)
√

ǫ(1 + ǫ) Reu+−
0+ +

1

2
cos(2φ − 2ϕ) ǫu+−

−+ . (4.10)

Here and in the following we order terms according to the hierarchy discussed after (3.11),

as already done in table 1. The terms independent of φ and ϕ in W LL
UU and W TT

UU are related

by

u++
++ + u−−

++ + 2ǫu++
0 0 = 1 −

(

u 0 0
++ + ǫu 0 0

0 0

)

, (4.11)

which ensures the normalization condition (4.7). The terms for beam polarization with an

unpolarized target read

W LL
LU (φ) = −2 sin φ

√

ǫ(1 − ǫ) Imu 0 0
0+ ,

W LT
LU (φ,ϕ) = sin(φ + ϕ)

√

ǫ(1 − ǫ) Im
(

u 0+
0+ − u−0

0+

)

− sin ϕ
√

1 − ǫ2 Im
(

u 0+
++ − u−0

++

)
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− sin(φ − ϕ)
√

ǫ(1 − ǫ) Im
(

u 0−
0+ − u+0

0+

)

,

W TT
LU (φ,ϕ) = − sinφ

√

ǫ(1 − ǫ) Im
(

u++
0+ + u−−

0+

)

+ sin(φ + 2ϕ)
√

ǫ(1 − ǫ) Im u−+
0+

− sin(2ϕ)
√

1 − ǫ2 Im u−+
++

+ sin(φ − 2ϕ)
√

ǫ(1 − ǫ) Im u+−
0+ . (4.12)

The results for longitudinal target polarization are very similar, with

W LL
UL(φ) = −2 sin φ

√

ǫ(1 + ǫ) Im l 0 0
0+ − sin(2φ) ǫ Im l 0 0

−+ ,

W LT
UL (φ,ϕ) = sin(φ + ϕ)

√

ǫ(1 + ǫ) Im
(

l 0+
0+ − l−0

0+

)

− sinϕ Im
(

l 0+
++ − l−0

++ + 2ǫl 0+
0 0

)

+ sin(2φ + ϕ) ǫ Im l 0+
−+

− sin(φ − ϕ)
√

ǫ(1 + ǫ) Im
(

l 0−
0+ − l+0

0+

)

+ sin(2φ − ϕ) ǫ Im l+0
−+ ,

W TT
UL (φ,ϕ) =

1

2
sin(2φ + 2ϕ) ǫ Im l−+

−+

− sinφ
√

ǫ(1 + ǫ) Im
(

l++
0+ + l−−

0+

)

+ sin(φ + 2ϕ)
√

ǫ(1 + ǫ) Im l−+
0+

− sin(2ϕ) Im
(

l−+
++ + ǫl−+

0 0

)

− sin(2φ) ǫ Im l++
−+

+ sin(φ − 2ϕ)
√

ǫ(1 + ǫ) Im l+−
0+ +

1

2
sin(2φ − 2ϕ) ǫ Im l+−

−+ (4.13)

for an unpolarized beam, and

W LL
LL (φ) = −2 cos φ

√

ǫ(1 − ǫ) Re l 0 0
0+ +

√

1 − ǫ2 l 0 0
++ ,

W LT
LL (φ,ϕ) = cos(φ + ϕ)

√

ǫ(1 − ǫ) Re
(

l 0+
0+ − l−0

0+

)

− cos ϕ
√

1 − ǫ2 Re
(

l 0+
++ − l−0

++

)

− cos(φ − ϕ)
√

ǫ(1 − ǫ) Re
(

l 0−
0+ − l+0

0+

)

,

W TT
LL (φ,ϕ) =

√

1 − ǫ2
1

2

(

l++
++ + l−−

++

)

− cos φ
√

ǫ(1 − ǫ) Re
(

l++
0+ + l−−

0+

)

+ cos(φ + 2ϕ)
√

ǫ(1 − ǫ) Re l−+
0+

− cos(2ϕ)
√

1 − ǫ2 Re l−+
++

+ cos(φ − 2ϕ)
√

ǫ(1 − ǫ) Re l+−
0+ (4.14)

for beam polarization. In (4.10) to (4.14) we have used the symmetry relations (3.9)

and (3.10) to write our results with a minimal set of matrix elements uνν′

µµ′ or lνν′

µµ′ . Although

they are a little lengthy, their structure is quite simple:

(i) The combinations u++
µµ′ + u−−

µµ′ , u 0+
µµ′ − u−0

µµ′ and u 0−
µµ′ − u+0

µµ′ and their analogs for l

always appear together because the corresponding products of spherical harmonics

– 12 –
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are identical, Y1+1Y
∗
1+1 = Y1−1Y

∗
1−1 and Y10Y

∗
1+1 = −Y1−1Y

∗
10. In some cases the

corresponding sum can be simplified using symmetry relations like u++
0 0 + u−−

0 0 =

2u++
0 0 , but in others one remains with a linear combination of matrix elements that

cannot be separated. With the caveats discussed after (3.11) one finds however that

these combinations are dominated by a single term. Exceptions are Re
(

u 0+
++ −u−0

++ +

2ǫu 0+
0 0

)

and Im
(

l 0+
++ − l−0

++ + 2ǫl 0+
0 0

)

, each of which contains two interference terms

between a helicity conserving and a helicity changing amplitude.

(ii) An angular dependence through (kφ + mϕ) is associated with the interference be-

tween transverse and longitudinal ρ polarization for |m| = 1, the interference between

positive and negative ρ helicity for |m| = 2, and equal ρ polarization in the amplitude

and its conjugate for m = 0. In the same way |k| = 1, |k| = 2 and k = 0 are related to

the virtual photon polarization. Notice that for m = 0 one can distinguish transverse

and longitudinal ρ production by the ϑ dependence in (4.8), whereas for k = 0 the

separation of terms for transverse and longitudinal photons requires variation of ǫ.

The beam spin asymmetries WLU and WLL contain no terms with |k| = 2, because

there is no term with Pℓ cos 2φ or Pℓ sin 2φ in the spin density matrix of the virtual

photon.

(iii) The unpolarized or doubly polarized terms WUU and WLL depend on Reu or Re l

and are even under the reflection (φ,ϕ) → (−φ,−ϕ) of the azimuthal angles, whereas

the single spin asymmetries WLU and WUL depend on Im u or Im l and are odd under

(φ,ϕ) → (−φ,−ϕ). This is a consequence of parity and time reversal invariance.

(iv) As we have written our results, the angular distribution for longitudinal target po-

larization can be obtained from the one for an unpolarized target by replacing

cos(kφ + mϕ) Re u → sin(kφ + mϕ) Im l ,

sin(kφ + mϕ) Im u → cos(kφ + mϕ) Re l . (4.15)

Terms with k = m = 0 in WUU and WLL are independent of φ and ϕ, and have of

course no counterparts in WUL or WLU . This corresponds to 16 terms with a different

angular dependence in WUU and 14 terms in WUL, and to 10 terms in WLL and 8

terms in WLU .

The symmetry properties (3.9) and (3.10), which we used to obtain (4.10) to (4.14), are

identical for uνν′

µµ′ and inνν′

µµ′ , as well as for lνν′

µµ′ and sνν′

µµ′ . According to (4.2) the cross section

for a transversely polarized target can therefore be obtained from the one for longitudinal

and no target polarization by the replacements

Reu → ST sin(φ − φS) Im n , SL Im l → ST cos(φ − φS) Im s ,

Im u → −ST sin(φ − φS) Ren , SL Re l → ST cos(φ − φS) Re s . (4.16)

We thus simply have

W LL
UT (φS , φ) = sin(φ − φS)

[

Im
(

n 0 0
++ +ǫn 0 0

0 0

)

– 13 –
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−2 cos φ
√

ǫ(1 + ǫ) Imn 0 0
0+−cos(2φ) ǫ Im n 0 0

−+

]

+ cos(φ − φS)

[

−2 sin φ
√

ǫ(1 + ǫ) Im s 0 0
0+−sin(2φ) ǫ Im s 0 0

−+

]

,

W LT
UT (φS , φ, ϕ) = sin(φ − φS)

[

cos(φ+ϕ)
√

ǫ(1 + ǫ) Im
(

n 0+
0+−n−0

0+

)

−cos ϕ Im
(

n 0+
++−n−0

++ +2ǫn 0+
0 0

)

+cos(2φ+ϕ) ǫ Im n 0+
−+

−cos(φ−ϕ)
√

ǫ(1 + ǫ) Im
(

n 0−
0+−n+0

0+

)

+cos(2φ−ϕ) ǫ Im n+0
−+

]

+ cos(φ − φS)

[

sin(φ+ϕ)
√

ǫ(1 + ǫ) Im
(

s 0+
0+−s−0

0+

)

−sin ϕ Im
(

s 0+
++−s−0

++ +2ǫs 0+
0 0

)

+sin(2φ+ϕ) ǫ Im s 0+
−+

−sin(φ−ϕ)
√

ǫ(1 + ǫ) Im
(

s 0−
0+−s+0

0+

)

+sin(2φ−ϕ) ǫ Im s+0
−+

]

,

W TT
UT (φS , φ, ϕ) = sin(φ − φS)

[

1

2
Im

(

n++
++ +n−−

++ +2ǫn++
0 0

)

+
1

2
cos(2φ+2ϕ) ǫ Im n−+

−+

−cos φ
√

ǫ(1 + ǫ) Im
(

n++
0+ +n−−

0+

)

+cos(φ+2ϕ)
√

ǫ(1 + ǫ) Imn−+
0+

−cos(2ϕ) Im
(

n−+
++ +ǫn−+

0 0

)

−cos(2φ) ǫ Im n++
−+

+cos(φ−2ϕ)
√

ǫ(1 + ǫ) Im n+−
0+ +

1

2
cos(2φ−2ϕ) ǫ Im n+−

−+

]

+ cos(φ − φS)

[

1

2
sin(2φ+2ϕ) ǫ Im s−+

−+

−sin φ
√

ǫ(1 + ǫ) Im
(

s++
0+ +s−−

0+

)

+sin(φ+2ϕ)
√

ǫ(1 + ǫ) Im s−+
0+

−sin(2ϕ) Im
(

s−+
++ +ǫs−+

0 0

)

−sin(2φ) ǫ Im s++
−+

+sin(φ−2ϕ)
√

ǫ(1 + ǫ) Im s+−
0+ +

1

2
sin(2φ−2ϕ) ǫ Im s+−

−+

]

(4.17)

for an unpolarized beam, and

W LL
LT (φS , φ) = sin(φ − φS)

[

2 sin φ
√

ǫ(1 − ǫ) Ren 0 0
0+

]

+ cos(φ − φS)

[

−2 cos φ
√

ǫ(1 − ǫ) Re s 0 0
0+ +

√

1−ǫ2 s 0 0
++

]

,
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W LT
LT (φS , φ, ϕ) = sin(φ − φS)

[

− sin(φ+ϕ)
√

ǫ(1 − ǫ) Re
(

n 0+
0+−n−0

0+

)

+ sin ϕ
√

1−ǫ2 Re
(

n 0+
++−n−0

++

)

+ sin(φ−ϕ)
√

ǫ(1 − ǫ) Re
(

n 0−
0+−n+0

0+

)

]

+ cos(φ − φS)

[

cos(φ+ϕ)
√

ǫ(1 − ǫ) Re
(

s 0+
0+−s−0

0+

)

−cos ϕ
√

1−ǫ2 Re
(

s 0+
++−s−0

++

)

−cos(φ−ϕ)
√

ǫ(1 − ǫ) Re
(

s 0−
0+−s+0

0+

)

]

,

W TT
LT (φS , φ, ϕ) = sin(φ − φS)

×
[

sin φ
√

ǫ(1 − ǫ) Re
(

n++
0+ +n−−

0+

)

−sin(φ+2ϕ)
√

ǫ(1 − ǫ) Re n−+
0+

+sin(2ϕ)
√

1−ǫ2 Ren−+
++−sin(φ−2ϕ)

√

ǫ(1 − ǫ) Ren+−
0+

]

+ cos(φ − φS)

[

√

1−ǫ2
1

2

(

s++
++ +s−−

++

)

−cos φ
√

ǫ(1 − ǫ) Re
(

s++
0+ +s−−

0+

)

+cos(φ+2ϕ)
√

ǫ(1 − ǫ) Re s−+
0+

−cos(2ϕ)
√

1−ǫ2 Re s−+
++ +cos(φ−2ϕ)

√

ǫ(1 − ǫ) Re s+−
0+

]

(4.18)

for beam polarization. With obvious adjustments, the general structure discussed in points

1 to 3 above is found again for a transverse target. Note that the terms u 0 0
++ + ǫu 0 0

0 0 and

u++
++ + u−−

++ + 2ǫu++
0 0 in the unpolarized coefficients W LL

UU and W TT
UU add up to 1 according

to (4.11), whereas their counterparts Im
(

n 0 0
++ + ǫn 0 0

0 0

)

and Im
(

n++
++ + n−−

++ + 2ǫn++
0 0

)

in

W LL
UT and W TT

UT are independent quantities. To keep the close similarity between the two

cases we have not used (4.11) to simplify (4.10).

Since there are two independent transverse polarizations relative to the hadron plane

(normal and sideways) we have a rather large number of terms with different angular

dependence in (4.17) and (4.18). The single spin asymmetry WUT contains 16 terms

with Im n and 14 terms with Im s , whereas the double spin asymmetry WLT contains 8

terms with Ren and 10 terms with Re s . Table 3 lists the number of independent linear

combinations of spin density matrix elements describing the angular distribution for the

different combinations of beam and target spin. For reasons discussed in section 5 it is

useful to consider the spin density matrices n and s separately. It is then natural to work

in the basis of angular functions given by the product of sin(φ − φS) or cos(φ − φS) with

sin(kφ + mϕ) or cos(kφ + mϕ). With the replacement rules (4.15) and (4.16) we obtain

the combinations

sin(φ − φS) cos(kφ + mϕ) Im n + cos(φ − φS) sin(kφ + mϕ) Im s ,

− sin(φ − φS) sin(kφ + mϕ) Ren + cos(φ − φS) cos(kφ + mϕ) Re s (4.19)
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unpolarized beam polarized beam

WUU WUL WUT WLU WLL WLT

Re u Im l Imn Im s Im u Re l Re n Re s

15 14 16 14 8 10 8 10

Table 3: Number of linear combinations of spin density matrix elements describing the angular

distribution of the cross section (4.5). The number of independent combinations for Reu is one

less than for Imn because of the relation (4.11).

in WUT and WLT , respectively.

We conclude this section by giving the relation between our spin density matrix ele-

ments for an unpolarized target and those in the classical work [14] of Schilling and Wolf.

We have

u 0 0
++ + ǫu 0 0

0 0 = r04
00 ,

Re
(

u 0+
0+ − u−0

0+

)

=
√

2
(

Im r6
10 − Re r5

10

)

,

u++
++ + u−−

++ + 2ǫu++
0 0 = 1 − r04

00 ,

u−+
−+ = r1

1−1 − Im r2
1−1 ,

Re u 0 0
0+ = −r5

00/
√

2 ,

Re
(

u 0+
++ − u−0

++ + 2ǫu 0+
0 0

)

= 2Re r04
10 ,

Re u 0+
−+ = Re r1

10 − Im r2
10 ,

Re
(

u 0−
0+ − u+0

0+

)

=
√

2
(

Im r6
10 + Re r5

10

)

,

Re
(

u−+
++ + ǫu−+

0 0

)

= r04
1−1 ,

Re u++
−+ = r1

11 ,

Re
(

u++
0+ + u−−

0+

)

= −
√

2 r5
11 ,

Re u−+
0+ =

(

Im r6
1−1 − r5

1−1

)

/
√

2 ,

u 0 0
−+ = r1

00 ,

Re u+0
−+ = Re r1

10 + Im r2
10 ,

Re u+−
0+ = −

(

Im r6
1−1 + r5

1−1

)

/
√

2 ,

u+−
−+ = r1

1−1 + Im r2
1−1 (4.20)

and

Im
(

u 0+
0+ − u−0

0+

)

=
√

2
(

Im r7
10 + Re r8

10

)

,

Im u 0 0
0+ = r8

00/
√

2 ,

Im
(

u 0+
++ − u−0

++

)

= −2 Im r3
10 ,

Im
(

u 0−
0+ − u+0

0+

)

=
√

2
(

Im r7
10 − Re r8

10

)

,

Im u−+
++ = − Im r3

1−1 ,

Im
(

u++
0+ + u−−

0+

)

=
√

2 r8
11 ,

Im u−+
0+ =

(

Im r7
1−1 + r8

1−1

)

/
√

2 ,
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Im u+−
0+ = −

(

Im r7
1−1 − r8

1−1

)

/
√

2 . (4.21)

The lower indices in the matrix elements of Schilling and Wolf refer to the ρ helicity and

correspond to the upper indices of u in our notation. Their upper indices correspond to a

representation of the virtual photon spin density matrix which refers partly to circular and

partly to linear polarization, whereas we use the helicity basis for the photon throughout.

The consequences of approximate s-channel helicity conservation are more explicit in our

notation: the relation Im r6
10 ≈ −Re r5

10 for instance corresponds to
∣

∣Re
(

u 0+
0+ − u−0

0+

)∣

∣ ≫
∣

∣Re
(

u 0−
0+ − u+0

0+

)∣

∣. Notice also that the simple relation between single-spin asymmetries

and imaginary parts of spin density matrix elements discussed in point 3 above holds in

the helicity basis but not for linear polarization.

We note that our phase convention (3.1) for the helicity states of the virtual photon

differs from the one in [14] by a relative minus sign between transverse and longitudinal

polarization, and that our normalization factors NT and NL in (3.5) differ from those

in [14] by a factor of two. The combinations of helicity amplitudes corresponding to the

spin density matrix elements in (4.20) and (4.21) should be compared according to

1

2

[

1

NT + ǫNL

∑

σλ

T νσ
µλ

(

T ν′σ
µ′λ

)∗
]

here

= ηµµ′

[

1

NT + ǫNL

∑

σλ

Tνσ,µλ T ∗
ν′σ,µ′λ

]

[14]

, (4.22)

where η0± = η±0 = −1 for the interference of transverse and longitudinal photon polar-

ization, and ηµµ′ = +1 in all other cases.4

5. Natural and unnatural parity

The exclusive process γ∗p → ρp is described by eighteen independent helicity amplitudes,

and we have already used approximate s-channel helicity conservation to establish a hierar-

chy among these amplitudes and the spin density matrix elements constructed from them.

A further dynamical criterion to order these quantities is given by natural and unnatural

parity exchange, which we shall now discuss.

Following [14] we define amplitudes N for natural and U unnatural parity exchange as

linear combinations

Nνσ
µλ =

1

2

[

T νσ
µλ + (−1)ν−µ T−νσ

−µλ

]

=
1

2

[

T νσ
µλ + (−1)λ−σ T ν−σ

µ−λ

]

,

Uνσ
µλ =

1

2

[

T νσ
µλ − (−1)ν−µ T−νσ

−µλ

]

=
1

2

[

T νσ
µλ − (−1)λ−σ T ν−σ

µ−λ

]

. (5.1)

4The correspondence in (4.20) to (4.22) is obtained from comparing our results (4.10) and (4.12) for the

angular distribution with the ones in eqs. (92) and (92a) of [14], together with the relation between spin

density matrix elements and helicity amplitudes specified in eq. (91) and appendix A of [14]. We have not

found an explicit specification of the phase convention for the virtual photon polarizations used in [14].
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With respect to the photon and meson helicity, the amplitudes N have the same symmetry

behavior as the amplitudes for γ∗t → ρt on a spin-zero target t, whereas the corresponding

relation for the amplitudes U has an additional minus sign,

N−νσ
−µλ = (−1)ν−µ Nνσ

µλ ,

U−νσ
−µλ = −(−1)ν−µ Uνσ

µλ . (5.2)

For the proton helicity we have relations Nν+
µ+ = Nν−

µ− and Nν+
µ− = −Nν−

µ+ for natural parity

exchange, compared to Uν+
µ+ = −Uν−

µ− and Uν+
µ− = Uν−

µ+ for unnatural parity exchange. This

symmetry behavior immediately implies that in a dynamical description using generalized

parton distributions, amplitudes N go with distributions H and E, whereas amplitudes U

go with distributions H̃ and Ẽ. This is explicitly borne out in the calculation of [24]. Since

U 0σ
0λ = 0 according to (5.2), unnatural parity exchange amplitudes are power suppressed

at large Q2 and the leading-twist factorization theorem [2] only applies to the natural

parity exchange amplitudes N 0σ
0λ . We remark that in the context of low-energy dynamics

t-channel exchange of a pion plays a prominent role for unnatural parity exchange ampli-

tudes, see e.g. [15]. This has a natural counterpart in the framework of generalized parton

distributions, where pion exchange gives an essential contribution to the distribution Ẽ in

the isovector channel [28, 3, 29].

For the spin density matrix elements one readily finds

uνν′

µµ′ = (NT + ǫNL)−1
∑

σ

[

Nνσ
µ+

(

Nν′σ
µ′+

)∗
+ Uνσ

µ+

(

Uν′σ
µ′+

)∗
]

,

lνν′

µµ′ = (NT + ǫNL)−1
∑

σ

[

Nνσ
µ+

(

U ν′σ
µ′+

)∗
+ Uνσ

µ+

(

N ν′σ
µ′+

)∗
]

,

sνν′

µµ′ = (NT + ǫNL)−1
∑

σ

[

Nνσ
µ+

(

U ν′σ
µ′−

)∗
+ Uνσ

µ+

(

N ν′σ
µ′−

)∗
]

,

nνν′

µµ′ = (NT + ǫNL)−1
∑

σ

[

Nνσ
µ+

(

N ν′σ
µ′−

)∗
+ Uνσ

µ+

(

U ν′σ
µ′−

)∗
]

. (5.3)

The matrix elements u and n hence involve a product of two natural parity exchange

amplitudes plus a product of two amplitudes for unnatural parity exchange, whereas l

and s involve the interference between natural and unnatural parity exchange [15]. To

the extent that amplitudes U are smaller than their counterparts N , one can thus expect

that matrix elements l and s are small compared with u and n for equal helicity indices.

Exceptions to this guideline are possible since products Nνσ
µ+

(

Nν′σ
µ′+

)∗
or Nνσ

µ−

(

N ν′σ
µ′+

)∗
may

have a small real or imaginary part due to the relative phase between the two amplitudes.

If amplitudes U are smaller than N , one can furthermore neglect the terms

ũνν′

µµ′ = (NT + ǫNL)−1
∑

σ

Uνσ
µ+

(

Uν′σ
µ′+

)∗
,

ñνν′

µµ′ = (NT + ǫNL)−1
∑

σ

Uνσ
µ+

(

Uν′σ
µ′−

)∗
(5.4)
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involving unnatural parity exchange in the matrix elements u and n . Using the relations

(−1)ν−µ u−νν′

−µµ′ = uνν′

µµ′ − 2ũνν′

µµ′ (5.5)

following from (5.2) and (5.3), we have in particular

−u 0+
−+ = u 0+

++ − 2ũ 0+
++ , u−+

−+ = u++
++ − 2ũ++

++ ,

−u−+
0+ = u++

0+ − 2ũ++
0+ , u++

−+ = u−+
++ − 2ũ−+

++ . (5.6)

This allows us to rewrite

W LT
UU = − cos ϕ Re

(

u 0+
++ − u−0

++ + 2ǫu 0+
0 0

)

− cos(2φ + ϕ) ǫRe
(

u 0+
++ − 2ũ 0+

++

)

+ . . . cos(φ + ϕ) + . . . cos(φ − ϕ) + . . . cos(2φ − ϕ) ,

W TT
UU =

1

2

(

u++
++ + u−−

++ + 2ǫu++
0 0

)

+
1

2
cos(2φ + 2ϕ) ǫ

(

u++
++ − 2ũ++

++

)

− cos φ
√

ǫ(1 + ǫ) Re
(

u++
0+ + u−−

0+

)

− cos(φ + 2ϕ)
√

ǫ(1 + ǫ) Re
(

u++
0+ − 2ũ++

0+

)

− cos(2ϕ) Re
(

u−+
++ + ǫu−+

0 0

)

− cos(2φ) ǫRe
(

u−+
++ − 2ũ−+

++

)

+ . . . cos(φ − 2ϕ) + . . . cos(2φ − 2ϕ) ,

W TT
LU = − sinφ

√

ǫ(1 − ǫ) Im
(

u++
0+ + u−−

0+

)

− sin(φ + 2ϕ)
√

ǫ(1 − ǫ) Im
(

u++
0+ − 2ũ++

0+

)

+ . . . sin(2ϕ) + . . . sin(φ − 2ϕ) , (5.7)

where terms indicated by . . . are the same as in the original expressions (4.10) and (4.12)

and have not been repeated for brevity. We see that the coefficients of adjacent terms

in (5.7) will be approximately equal to the extent that unnatural parity exchange is sup-

pressed and s-channel helicity approximately conserved. This can be tested experimentally

by measuring the angular distribution of the final-state particles.

The relations (5.6) and their counterparts for other index combinations can also be

used to approximately isolate spin density matrix elements of particular interest. Consider

as an example the leading-twist matrix element u 0 0
0 0 , which in the angular distribution

appears only in the combination u 0 0
++ + ǫu 0 0

0 0 , i.e. together with a matrix element that

should be suppressed since it does not conserve s-channel helicity. If unnatural parity

exchange is strongly suppressed, an even better approximation for u 0 0
0 0 can be obtained

from the linear combination

ǫu 0 0
0 0 + 2ũ 0 0

++ =
(

u 0 0
++ + ǫu 0 0

0 0

)

+ u 0 0
−+ , (5.8)

whose r.h.s. can be extracted from the angular distribution. Similarly, one can approxi-

mately isolate the matrix element Re u 0+
0 0 in the combination

ǫRe u 0+
0 0 + Re

(

ũ 0+
++ − ũ−0

++

)

=
1

2

[

Re
(

u 0+
++ − u−0

++ + 2ǫu 0+
0 0

)

+ Reu 0+
−+ + Reu+0

−+

]

. (5.9)

– 19 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
4

Conversely, one can extract from the angular distribution the linear combinations

ũ++
++ + ũ++

−− + 2ǫũ++
0 0 − 2Re ũ++

−+ =
1

2

(

u++
++ + u−−

++ + 2ǫu++
0 0

)

− 1

2
u−+
−+ − 1

2
u+−
−+

+ Re
(

u−+
++ + ǫu−+

0 0

)

− Re u++
−+ ,

ũ++
0+ + ũ−−

0+ =
1

2

(

u++
0+ + u−−

0+

)

+
1

2
u−+

0+ +
1

2
u+−

0+ , (5.10)

which only involve unnatural parity exchange. In a dynamical approach based on gen-

eralized parton distributions, these combinations are interesting because they isolate the

polarized distributions H̃ and Ẽ and in particular involve these distributions for gluons,

which are very hard to access in any other process.5 The price to pay for this is that

the corresponding amplitudes are power suppressed and cannot be calculated with the

theoretical rigor provided by the leading-twist factorization theorem. On the other hand,

phenomenological analysis indicates that a quantitative description of meson production

at Q2 of a few GeV2 requires the inclusion of power-suppressed effects also for the leading

matrix element u 0 0
0 0 .

The discussion of the matrix elements for transverse target polarization normal to the

hadron plane proceeds in full analogy to the unpolarized case. With

(−1)ν−µ n−νν′

−µµ′ = nνν′

µµ′ − 2ñνν′

µµ′ (5.11)

we have

−n 0+
−+ = n 0+

++ − 2ñ 0+
++ , n−+

−+ = n++
++ − 2ñ++

++ ,

−n−+
0+ = n++

0+ − 2ñ++
0+ , n++

−+ = n−+
++ − 2ñ−+

++ (5.12)

and can write

W LT
UT = cos(φ − φS)

[

. . .

]

+ sin(φ − φS)

×
[

− cos ϕ Im
(

n 0+
++ − n−0

++ + 2ǫn 0+
0 0

)

− cos(2φ + ϕ) ǫ Im
(

n 0+
++ − 2ñ 0+

++

)

+ . . . cos(φ + ϕ) + . . . cos(φ − ϕ) + . . . cos(2φ − ϕ)

]

,

W TT
UT = cos(φ − φS)

[

. . .

]

+ sin(φ − φS)

×
[

1

2
Im

(

n++
++ +n−−

++ +2ǫn++
0 0

)

+
1

2
cos(2φ+2ϕ) ǫ Im

(

n++
++−2ñ++

++

)

− cos φ
√

ǫ(1+ǫ) Im
(

n++
0+ +n−−

0+

)

−cos(φ+2ϕ)
√

ǫ(1+ǫ) Im
(

n++
0+−2ñ++

0+

)

− cos(2ϕ) Im
(

n−+
++ + ǫn−+

0 0

)

− cos(2φ) ǫ Im
(

n−+
++ − 2ñ−+

++

)

5In contrast to their quark counterparts, H̃g and Ẽg do not appear in pseudoscalar meson production

at leading twist and leading order in αs, see e.g. section 5.1.1 of [30].
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+ . . . cos(φ − 2ϕ) + . . . cos(2φ − 2ϕ)

]

,

W TT
LT = cos(φ − φS)

[

. . .

]

+ sin(φ − φS)

×
[

sinφ
√

ǫ(1 − ǫ) Re
(

n++
0+ + n−−

0+

)

+ sin(φ + 2ϕ)
√

ǫ(1 − ǫ) Re
(

n++
0+ − 2ñ++

0+

)

+ . . . sin(2ϕ) + . . . sin(φ − 2ϕ)

]

, (5.13)

where terms denoted by . . . are as in the original expressions (4.17) and (4.18). Again, the

coefficients of adjacent terms should be approximately equal to the extent that unnatural

parity exchange is suppressed and s-channel helicity approximately conserved. The matrix

elements Im n 0 0
0 0 and Im n 0+

0 0 can be approximately isolated in

ǫ Im n 0 0
0 0 + 2 Im ñ 0 0

++ = Im
(

n 0 0
++ + ǫn 0 0

0 0

)

+ Im n 0 0
−+ (5.14)

and

ǫ Im n 0+
0 0 + Im

(

ñ 0+
++ − ñ−0

++

)

=
1

2

[

Im
(

n 0+
++ − n−0

++ + 2ǫn 0+
0 0

)

+ Im n 0+
−+ + Im n+0

−+

]

.

(5.15)

In turn, the linear combinations

Im
(

ñ++
++ + ñ++

−− + 2ǫñ++
0 0 − 2ñ++

−+

)

=
1

2
Im

(

n++
++ + n−−

++ + 2ǫn++
0 0

)

− 1

2
Im n−+

−+ − 1

2
Im n+−

−+

+ Im
(

n−+
++ + ǫn−+

0 0

)

− Im n++
−+ ,

ñ++
0+ + ñ−−

0+ =
1

2

(

n++
0+ + n−−

0+

)

+
1

2
n−+

0+ +
1

2
n+−

0+ (5.16)

involve only unnatural parity exchange.

6. Positivity constraints

From the definition (3.4) of the spin-density matrix elements one readily finds

∑

νµλ

∑

ν′µ′λ′

cν
µλ ρνν′

µµ′,λλ′

(

cν′

µ′λ′

)∗
= (NT + ǫNL)−1

∑

σ

∣

∣

∣

∣

∑

νµλ

cν
µλ T νσ

µλ

∣

∣

∣

∣

2

≥ 0 (6.1)

for arbitrary complex numbers cν
µλ. Hence ρνν′

µµ′,λλ′ is a positive semidefinite matrix, with

row indices specified by {νµλ} and column indices by {ν ′µ′λ′}. This implies inequalities

among the spin density matrix elements, which extend those given e.g. in [22, 27]. We

do not attempt here to study the bounds following from positivity of the full 18 × 18

matrix ρνν′

µµ′,λλ′ , which is quite unwieldy. Instead, we consider the subset of matrix elements

conserving s-channel helicity for the photon-meson transition and derive a number of simple

inequalities, which may be useful in practice. Ordering the row and column indices as
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{+++}, {0 0+}, {−−+}, {++−}, {0 0−}, {−−−}, we have a positive semidefinite matrix

C, which can be written in block form as

C =

(

A+ B+

B− A−

)

(6.2)

with

Aη =









u++
++ + η l++

++

(

u 0+
0+ + η l 0+

0+

)∗
u−+
−+ − η l−+

−+

u 0+
0+ + η l 0+

0+ u 0 0
0 0 u 0+

0+ − η l 0+
0+

u−+
−+ + η l−+

−+

(

u 0+
0+ − η l 0+

0+

)∗
u++

++ − η l++
++









(6.3)

and

Bη =









s++
++ + η n++

++

(

s 0+
0+ − η n 0+

0+

)∗ −s−+
−+ + η n−+

−+

s 0+
0+ + η n 0+

0+ η n 0 0
0 0 −s 0+

0+ + η n 0+
0+

s−+
−+ + η n−+

−+ −
(

s 0+
0+ + η n 0+

0+

)∗ −s++
++ + η n++

++









, (6.4)

where η = ±1. Concentrating first on the matrix elements for an unpolarized or longitu-

dinally polarized target, we find that the matrix Aη has eigenvalues whose expressions are

very lengthy and therefore restrict our attention to 2×2 submatrices. The matrix obtained

from the first and third rows and columns of A+ has eigenvalues

u++
++ ±

√

(

u−+
−+

)2
+

(

l++
++

)2
+

(

Im l−+
−+

)2
, (6.5)

whose positivity implies a bound

(

l++
++

)2
+

(

Im l−+
−+

)2 ≤
(

u++
++

)2 −
(

u−+
−+

)2
. (6.6)

Similarly, the matrix obtained from the first and second and the matrix obtained from the

second and third rows and columns of A+ have respective eigenvalues

1

2

(

u++
++ + l++

++ + u 0 0
0 0

)

± 1

2

√

(

u++
++ + l++

++ − u 0 0
0 0

)2
+ 4

∣

∣u 0+
0+ + l 0+

0+

∣

∣

2
,

1

2

(

u++
++ − l++

++ + u 0 0
0 0

)

± 1

2

√

(

u++
++ − l++

++ − u 0 0
0 0

)2
+ 4

∣

∣u 0+
0+ − l 0+

0+

∣

∣

2
, (6.7)

whose positivity gives bounds

(

Reu 0+
0+ + Re l 0+

0+

)2
+

(

Im u 0+
0+ + Im l 0+

0+

)2 ≤ u 0 0
0 0

(

u++
++ + l++

++

)

,
(

Reu 0+
0+ − Re l 0+

0+

)2
+

(

Im u 0+
0+ − Im l 0+

0+

)2 ≤ u 0 0
0 0

(

u++
++ − l++

++

)

. (6.8)

A weaker condition is obtained by taking the sum of these two bounds,

(

Re l 0+
0+

)2
+

(

Im l 0+
0+

)2 ≤ u 0 0
0 0 u++

++ −
(

Re u 0+
0+

)2 −
(

Im u 0+
0+

)2
. (6.9)

The bounds (6.6) and (6.9) have right-hand sides involving only matrix elements accessi-

ble with an unpolarized target and constrain the matrix elements for longitudinal target

polarization on their left-hand sides.
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As a second example let us derive conditions which involve only matrix elements u

and n . To this end we consider the matrix

C′ =
1

2

(

C + D†C D
)

(6.10)

with

D =



















0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0



















, (6.11)

which is half the sum of the positive semidefinite matrices C and D†C D and hence positive

semidefinite itself. One readily finds that matrix elements l and s drop out in C′, which

reads

C′ =



























u++
++

(

u 0+
0+

)∗
u−+
−+ n++

++ −
(

n 0+
0+

)∗
n−+
−+

u 0+
0+ u 0 0

0 0 u 0+
0+ n 0+

0+ n 0 0
0 0 n 0+

0+

u−+
−+

(

u 0+
0+

)∗
u++

++ n−+
−+ −

(

n 0+
0+

)∗
n++

++

−n++
++

(

n 0+
0+

)∗ −n−+
−+ u++

++

(

u 0+
0+

)∗
u−+
−+

−n 0+
0+ −n 0 0

0 0 −n 0+
0+ u 0+

0+ u 0 0
0 0 u 0+

0+

−n−+
−+

(

n 0+
0+

)∗ −n++
++ u−+

−+

(

u 0+
0+

)∗
u++

++



























. (6.12)

This matrix has three eigenvalues

u++
++ − u−+

−+ + Im n++
++ − Im n−+

−+ ,

1

2

(

u++
++ + u−+

−+ + Im n++
++ + Im n−+

−+ + u 0 0
0 0 + Imn 0 0

0 0

)

± 1

2

√

(

u++
++ + u−+

−+ + Im n++
++ + Im n−+

−+ − u 0 0
0 0 − Imn 0 0

0 0

)2
+ 8

∣

∣u 0+
0+ − in 0+

0+

∣

∣

2
(6.13)

and three further eigenvalues obtained by reversing the sign of all matrix elements n . Their

positivity results in the bounds

(

Imn++
++ − Imn−+

−+

)2 ≤
(

u++
++ − u−+

−+

)2
(6.14)

and

2
(

Reu 0+
0+ + Im n 0+

0+

)2
+ 2

(

Im u 0+
0+ − Ren 0+

0+

)2

≤
(

u 0 0
0 0 + Imn 0 0

0 0

) (

u++
++ + u−+

−+ + Im n++
++ + Im n−+

−+

)

,

2
(

Reu 0+
0+ − Im n 0+

0+

)2
+ 2

(

Im u 0+
0+ + Ren 0+

0+

)2

≤
(

u 0 0
0 0 − Imn 0 0

0 0

) (

u++
++ + u−+

−+ − Im n++
++ − Im n−+

−+

)

. (6.15)

Omitting the terms with Im u 0+
0+ and Ren 0+

0+ , one obtains bounds involving only matrix

elements that are accessible with an unpolarized lepton beam.
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As we have seen in section 4, s-channel helicity conserving matrix elements can be

extracted from the angular distribution under the approximation that s-channel helicity

changing transitions are suppressed. The bounds derived in this section may be used to

check the consistency of this approximation.

7. Mixing between transverse and longitudinal polarization

So far we have discussed target polarization longitudinal or transverse to the virtual photon

direction in the target rest frame, which is natural from the point of view of the strong-

interaction dynamics. In an experimental setup one has however definite target polarization

with respect to the lepton beam direction. The transformation from one polarization basis

to the other is readily performed using the relations (2.3). For a target having longitudinal

polarization PL with respect to the lepton beam one finds

dσ

dφ dϕd(cos ϑ) dxB dQ2 dt
=

1

2π

dσ

dxB dQ2 dt
(7.1)

×
(

WUU + PL

[

cos θγ WUL − sin θγ WUT (φS = 0)

]

+ PℓWLU + PℓPL

[

cos θγ WLL − sin θγ WLT (φS = 0)

])

.

Note that in this case the azimuthal angle ψ in (4.5) needs to be defined with respect

to some fixed spatial direction in the target rest frame, rather than with respect to the

(vanishing) transverse component of the target polarization relative to the lepton beam.

We have integrated over this angle in (7.1) because the cross section does not depend on it.

For a target having transverse polarization PT with respect to the lepton beam one

has

dσ

dφS dφ dϕd(cos ϑ) dxB dQ2 dt
=

1

(2π)2
dσ

dxB dQ2 dt

cos θγ

1 − sin2θγ sin2φS

(7.2)

×
(

WUU + PT
cos θγ WUT + sin θγ cos φS WUL

(

1 − sin2θγ sin2φS

)

1/2

+ PℓWLU + PℓPT
cos θγ WLT + sin θγ cos φS WLL

(

1 − sin2θγ sin2φS

)

1/2

)

.

The factor cos θγ /(1 − sin2θγ sin2φS) comes from the change of variables from dψ to dφS

in the cross section. The relation between these two angles is readily obtained by setting

PL = 0 in (2.3) and given in [22].

It is a straightforward (if somewhat lengthy) exercise to insert our results (4.13), (4.14)

and (4.17), (4.18) into (7.1) and (7.2) and to rewrite the expressions in terms of a suitable

basis of functions depending on the azimuthal angles. Here we only give the combinations

needed in (7.2) for a transversely polarized target and an unpolarized beam,

cos θγ W LL
UT (φS , φ) + sin θγ cos φS W LL

UL(φ) =
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sin(φ − φS)

[

cos θγ Im
(

n 0 0
++ +ǫn 0 0

0 0

)

−sin θγ

√

ǫ(1 + ǫ) Im l 0 0
0+

− cos(2φ)

{

cos θγ ǫ Im n 0 0
−+−sin θγ

√

ǫ(1 + ǫ) Im l 0 0
0+

}

− 2 cos φ

{

cos θγ

√

ǫ(1 + ǫ) Imn 0 0
0+ +

1

4
sin θγ ǫ Im l 0 0

−+

}]

+ cos(φ − φS)

[

−sin(2φ)

{

cos θγ ǫ Im s 0 0
−+ +sin θγ

√

ǫ(1 + ǫ) Im l 0 0
0+

}

− 2 sin φ

{

cos θγ

√

ǫ(1 + ǫ) Im s 0 0
0+ +

1

4
sin θγ ǫ Im l 0 0

−+

}]

− 1

2
sin θγ sin(φS+2φ) ǫ Im l 0 0

−+ , (7.3)

cos θγ W LT
UT (φS , φ, ϕ) + sin θγ cos φS W LT

UL (φ,ϕ) =

sin(φ − φS)

[

cos(φ+ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im
(

n 0+
0+−n−0

0+

)

+
1

2
sin θγ

[

Im
(

l 0+
++−l−0

++ +2ǫl 0+
0 0

)

+ǫ Im l 0+
−+

]}

− cos(φ−ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im
(

n 0−
0+−n+0

0+

)

+
1

2
sin θγ

[

Im
(

l 0+
++−l−0

++ +2ǫl 0+
0 0

)

−ǫ Im l+0
−+

]}

+ cos(2φ+ϕ)

{

cos θγ ǫ Im n 0+
−+− 1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l 0+
0+−l−0

0+

)

}

+ cos(2φ−ϕ)

{

cos θγ ǫ Im n+0
−+ +

1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l 0−
0+−l+0

0+

)

}

− cos ϕ

{

cos θγ Im
(

n 0+
++−n−0

++ +2ǫn 0+
0 0

)

− 1

2
sin θγ

√

ǫ(1 + ǫ)

[

Im
(

l 0+
0+−l−0

0+

)

−Im
(

l 0−
0+−l+0

0+

)

]}]

+ cos(φ − φS)

[

sin(φ+ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im
(

s 0+
0+−s−0

0+

)

− 1

2
sin θγ

[

Im
(

l 0+
++−l−0

++ +2ǫl 0+
0 0

)

−ǫ Im l 0+
−+

]}

− sin(φ−ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im
(

s 0−
0+−s+0

0+

)

− 1

2
sin θγ

[

Im
(

l 0+
++−l−0

++ +2ǫl 0+
0 0

)

+ǫ Im l+0
−+

]}

+ sin(2φ+ϕ)

{

cos θγ ǫ Im s 0+
−+ +

1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l 0+
0+−l−0

0+

)

}

+ sin(2φ−ϕ)

{

cos θγ ǫ Im s+0
−+− 1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l 0−
0+−l+0

0+

)

}
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− sin ϕ

{

cos θγ Im
(

s 0+
++−s−0

++ +2ǫs 0+
0 0

)

− 1

2
sin θγ

√

ǫ(1 + ǫ)

[

Im
(

l 0+
0+−l−0

0+

)

+Im
(

l 0−
0+−l+0

0+

)

]}]

+
1

2
sin θγ

{

sin(φS +2φ+ϕ) ǫ Im l 0+
−+ +sin(φS+2φ−ϕ) ǫ Im l+0

−+

}

, (7.4)

cos θγ W TT
UT (φS , φ, ϕ) + sin θγ cos φS W TT

UL (φ,ϕ) =

sin(φ − φS)

[

1

2
cos θγ Im

(

n++
++ +n−−

++ +2ǫn++
0 0

)

− 1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l++
0+ +l−−

0+

)

−cos(2φ)

{

cos θγ ǫ Im n++
−+− 1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l++
0+ +l−−

0+

)

}

− cos φ

{

cos θγ

√

ǫ(1 + ǫ) Im
(

n++
0+ +n−−

0+

)

+
1

2
sin θγ ǫ Im l++

−+

}

+
1

2
cos(2φ+2ϕ)

{

cos θγ ǫ Im n−+
−+−sin θγ

√

ǫ(1 + ǫ) Im l−+
0+

}

+
1

2
cos(2φ−2ϕ)

{

cos θγ ǫ Im n+−
−+−sin θγ

√

ǫ(1 + ǫ) Im l+−
0+

}

− cos(2ϕ)

{

cos θγ Im
(

n−+
++ +ǫn−+

0 0

)

− 1

2
sin θγ

√

ǫ(1 + ǫ)

[

Im l−+
0+ +Im l+−

0+

]}

+ cos(φ+2ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im n−+
0+ +

1

4
sin θγ

[

ǫ Im l−+
−+ +2 Im

(

l−+
++ +ǫl−+

0 0

)

]}

+cos(φ−2ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Imn+−
0+ +

1

4
sin θγ

[

ǫ Im l+−
−+−2 Im

(

l−+
++ +ǫl−+

0 0

)

]}]

+ cos(φ − φS)

[

−sin(2φ)

{

cos θγ ǫ Im s++
−+ +

1

2
sin θγ

√

ǫ(1 + ǫ) Im
(

l++
0+ +l−−

0+

)

}

−sin φ

{

cos θγ

√

ǫ(1 + ǫ) Im
(

s++
0+ +s−−

0+

)

+
1

2
sin θγ ǫ Im l++

−+

}

+
1

2
sin(2φ+2ϕ)

{

cos θγ ǫ Im s−+
−+ +sin θγ

√

ǫ(1 + ǫ) Im l−+
0+

}

+
1

2
sin(2φ−2ϕ)

{

cos θγ ǫ Im s+−
−+ +sin θγ

√

ǫ(1 + ǫ) Im l+−
0+

}

− sin(2ϕ)

{

cos θγ Im
(

s−+
++ +ǫs−+

0 0

)

− 1

2
sin θγ

√

ǫ(1 + ǫ)

[

Im l−+
0+−Im l+−

0+

]}

+ sin(φ+2ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im s−+
0+ +

1

4
sin θγ

[

ǫ Im l−+
−+−2 Im

(

l−+
++ +ǫl−+

0 0

)

]}

+sin(φ−2ϕ)

{

cos θγ

√

ǫ(1 + ǫ) Im s+−
0+ +

1

4
sin θγ

[

ǫ Im l+−
−+ +2 Im

(

l−+
++ +ǫl−+

0 0

)

]}]

+
1

4
sin θγ

{

sin(φS +2φ+2ϕ) ǫ Im l−+
−+ +sin(φS +2φ−2ϕ) ǫ Im l+−

−+

}

− 1

2
sin θγ sin(φS+2φ) ǫ Im l++

−+ . (7.5)

Compared with (4.17) and (4.18) we have changed the order of terms such that one readily
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sees which coefficients cos θγ Im n or cos θγ Im s receive an admixture from the same coef-

ficients sin θγ Im l . The terms in the last lines of (7.3) and (7.4) and in the last two lines

of (7.5) involve only coefficients sin θγ Im l . They come with an angular dependence which

is absent for sin θγ = 0, as is readily seen by rewriting

sin(φS+2φ+mϕ) =−sin(φ − φS) cos(3φ+mϕ)+cos(φ − φS) sin(3φ+mϕ) . (7.6)

We see in (7.3) to (7.5) that from the angular dependence of the cross section for

transverse target polarization one can extract linear combinations of terms cos θγ Im n and

sin θγ Im l or of cos θγ Im s and sin θγ Im l . To separate these terms requires an additional

measurement with longitudinal target polarization.6 The expressions (7.3) to (7.5) allow

us to see for which terms the admixture of sin θγ Im l terms can be expected to be small, so

that Im n and Im s may be determined with reasonable accuracy without such an additional

measurement. Let us discuss a few examples.

(i) The leading-twist matrix element n 0 0
0 0 appears in the linear combination

c0 = cos θγ Im
(

n 0 0
++ + ǫn 0 0

0 0

)

− sin θγ

√

ǫ(1 + ǫ) Im l 0 0
0+ (7.7)

in (7.3) and thus has an admixture from l 0 0
0+ , which involves one s-channel helicity

changing amplitude. According to section 5 this admixture is additionally suppressed

if unnatural parity exchange is small compared with natural parity exchange. One

may also add to c0 the angular coefficient

c1 = − cos θγ ǫ Im n 0 0
−+ + sin θγ

√

ǫ(1 + ǫ) Im l 0 0
0+ (7.8)

from (7.3), thus trading the admixture of sin θγ l 0 0
0+ for an admixture of cos θγ n 0 0

−+ ,

which involves two s-channel helicity changing amplitudes (but lacks the relative

factor tan θγ and is not suppressed by unnatural parity exchange). We remark that

the linear combination of matrix elements in (5.14) corresponds to c0−c1/ǫ, where

l 0 0
0+ does not drop out. Whether c0, c0 + c1 or c0 − c1/ǫ gives the best approximation

to cos θγ ǫ Im n 0 0
0 0 will thus depend on the detailed magnitude of the relevant terms.

In practice one might for instance use the difference between these terms as a measure

for the uncertainty of this approximation.

(ii) The s-channel helicity conserving matrix elements n 0+
0+ in (7.4) and n++

++ , n−+
−+ in (7.5)

come together with terms involving at least one s-channel helicity changing ampli-

tude. These admixtures should hence be negligible unless the corresponding s-channel

helicity conserving matrix element is small itself. For Im n 0+
0+ this may for instance

happen because of the relative phase between the interfering amplitudes.

(iii) The matrix element n 0 0
0+ in (7.3) comes with an admixture from l 0 0

−+ , which involves

two s-channel helicity changing amplitudes and should hence again be suppressed. In

6A corresponding separation for semi-inclusive pion production ep → eπX has recently been performed

in [31].

– 27 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
4

addition, one can extract Im l 0 0
−+ from the angular dependence itself, given the last

term in (7.3). We remark that the unpolarized analog u 0 0
0+ of n 0 0

0+ has a real part

which is experimentally seen to be nonzero [17, 19], providing evidence that s-channel

helicity is not strictly conserved in electroproduction. (In the notation of Schilling

and Wolf one has r5
00 = −

√
2 Reu 0 0

0+ .)

(iv) The only s-channel helicity conserving matrix elements for sideways transverse target

polarization in (7.3) to (7.5) are s 0+
0+ and s−+

−+ . They come together with terms

involving at least one s-channel helicity changing amplitude, so that the situation

is similar to the one in point 2. Note however that in the present case there is no

additional suppression of the admixture terms due to unnatural parity exchange,

since both s and l contain one unnatural parity exchange amplitude.

In these examples one thus has the favorable situation that the admixture from longitudinal

polarization terms is probably small and in some cases may even be removed or traded for

yet smaller terms. This does not always happen: the matrix elements n 0+
−+ and s 0+

−+

in (7.4) receive for instance an admixture from the s-channel helicity conserving term l 0+
0+ ,

which may not be small itself, so that from the coefficients of sin(φ − φS) cos(2φ + ϕ) or

cos(φ−φS) sin(2φ+ϕ) one cannot directly infer on the matrix elements Imn 0+
−+ or Im s 0+

−+ .

To make a more precise statement about their size one needs independent information on

Im l 0+
0+ , for instance from the positivity bound (6.9).

8. A note on non-resonant contributions

So far we have treated the production of two pions in a two-step picture, where a ρ is first

produced in ep → epρ and then decays as ρ → π+π−. For deriving the angular distribution

and polarization dependence we have used that the pion pair is in the L = 1 partial wave,

as can be seen in (4.3). We did however not use the narrow-width approximation for

the ρ or make any assumption about its line shape. In fact, our results for the angular

distribution can readily be used at any given invariant mass mππ of the pion pair, with the

ep cross sections on the left- and right-hand sides of (4.5) made differential in mππ. The

spin-density matrix ρνν′

µµ′,λλ′ and its linear combinations u , l , s , n then depend on mππ and

refer not to γ∗p → ρp but to γ∗p → π+π− p with π+π− in the L = 1 partial wave. No

explicit reference to the ρ resonance needs to be made in this case.

The situation is more complicated if one considers other partial waves of the pion pair,

which can arise from non-resonant production mechanisms. To describe a general π+π−

state, one should replace ρνν′

µµ′,λλ′ with the spin-density matrix ρνν′,LL′

µµ′,λλ′ for a pion pair with

angular momentum L in the amplitude and L′ in the conjugate amplitude. One then has to

take YLν(ϕ, ϑ)Y ∗
L′ν′(ϕ, ϑ) instead of Y1ν(ϕ, ϑ)Y ∗

1ν′(ϕ, ϑ) in (4.3) and will obviously obtain

a different angular dependence of the ep cross section. The distribution in ϕ and ϑ for a

pion pair with L = 0, 1, 2 has been discussed in [32].

It is quite simple to test for the presence of L = 0 or L = 2 partial waves in data

by using discrete symmetry properties, and for mππ around the ρ mass one can expect

that partial waves with L = 3 or higher are strongly phase space suppressed. Since even
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partial waves of the π+π− system have charge conjugation parity C = +1 and odd partial

waves have C = −1, the interference of L = 1 with L = 0 or L = 2 gives rise to terms in

the angular distribution which are odd under interchange of the π+ and π− momenta, i.e.

under the replacement

ϑ → π − ϑ , ϕ → ϕ + π . (8.1)

Simple examples are an angular dependence like cos ϑ or like an odd polynomial in cos ϑ.

Corresponding observables provide a way to study the L = 0 and L = 2 partial waves as a

“signal” interfering with the ρ resonance “background” [33, 34]. This has been used in the

experimental analysis [35], which did see such interference away from the ρ resonance peak,

whereas close to the peak the predominance of the ρ was too strong to observe a significant

contribution from any partial wave with L 6= 1. If on the other hand one is interested in a

precise study of the L = 1 component, one can eliminate its interference with even partial

waves by symmetrizing the angular distribution according to (8.1). One is then left with

contributions from L = 0 and L = 2 in both the amplitude and its conjugate, which should

be very small around the ρ peak.

9. Summary

We have expressed the fully differential cross section for exclusive ρ production on a po-

larized nucleon in terms of spin density matrix element for the subprocess γ∗p → ρp. We

work in the helicity basis for both γ∗ and ρ and obtain very similar forms for the unpolar-

ized and polarized parts of the cross sections, with the substitution rules (4.15) and (4.16).

The terms for transverse target polarization normal to the hadron plane closely resemble

those for an unpolarized target, and in both cases the number of independent spin density

matrix elements is reduced if one neglects unnatural parity exchange compared with nat-

ural parity exchange. The spin density matrix elements for transverse target polarization

in the hadron plane closely resemble those for a longitudinally polarized target, with both

types of matrix elements involving the interference between natural and unnatural parity

exchange. We have given simple positivity bounds which involve only matrix elements for

an unpolarized target and either those for longitudinal target polarization or for transverse

target polarization normal to the hadron plane. Furthermore, we have investigated the

admixture of longitudinal target polarization relative to the virtual photon momentum for

a target polarized transversely to the lepton beam. This admixture should be small for

the spin density matrix elements which conserve s-channel helicity in the transition from

γ∗ to ρ, but it may be important for s-channel helicity changing matrix elements. Finally,

we have briefly discussed how the results obtained in this paper can be used and extended

for analyzing the production of pion pairs not associated with the ρ resonance.
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